Contents

Abstract	i
Acknowledgements	ii
List of figures	vii
List of tables	xii
List of symbols	xiii
Chapter 1: Introduction	1
1.1 Context	1
1.2 Aims	1
1.3 Approach	2
1.4 Summary	2
Chapter 2: Review of field studies	3
2.1 Introduction	3
2.2 Agents of change	3
2.3 Vegetation cover change	4
2.3.1 The history and influence of upland vegetation cover on valley floor	4
development	
2.4 Climate change	6
2.4.1 Impacts of climate change on valley floors	7
2.4.2 Impacts of climate change on upland catchments	9
2.4.3 Evidence of Holocene climate change	11
2.4.4 Recent climate change	15
2.4.5 Evidence for future climate change	15
2.5 Flood frequency, magnitude and extreme floods	16
2.6 Problems of field based studies	
2.7 Modelling aims	21
Chapter 3: Contemporary environmental models	22
3.1 Introduction	22
3.2 Fluvial models	22
3.2.1 Cross sectional approach	22

3.2.2 Finite element modelling	24
3.2.3 Other fluvial models	29
3.3 Slope models	30
3.4 Hydrological models	32
3.5 Cellular models	33
3.5.1 Introduction	33
3.5.2 Landscape evolution models	34
3.5.3 Cellular automaton models	37
3.5.4 Examples of non-linear behaviour	39
3.5.5 Limitations of cellular models	40
3.5.5.1 Grid cell problems	40
3.5.5.2 Process representation and parameterisation	41
3.5.5.3 Steepest flow algorithm	42
3.5.5.4 Validation of results	43
3.5.6 Summary of CA models	44
3.6 Sediment transport laws	46
3.7 Grainsize modelling	49
3.8 Overview	52
Chapter 4: The model	54
4.1 Introduction	54
4.2 Model description	55
4.2.1 Model structure	55
4.2.2 Hydrological model	56
4.2.3 Flow routing	57
4.2.4 Erosion/deposition	61
4.2.5 Slope processes	63
4.2.5.1 Mass movement	63
4.2.5.2 Soil Creep	63
4.2.6 Vegetation growth	63
4.3 Implementation	64
4.3.1 Preparation of data	64
4.3.2 Run time optimisations	64

4.4 Operation	66
4.4.1 Spin up – intiation	66
4.4.2 Description of models operation	66
4.5 Evaluation	68
4.5.1 Testing of flow routing	68
4.5.1.1 Method	68
4.5.1.2 Discussion	68
4.5.2 Testing of area calculation and scanning algorithm	74
4.5.3 Grid cell size validation	76
4.5.4 'Other' parameters	77
4.6 Conclusions	78
Chapter 5: Study area; background, description and model application	79
5.1 Choice of field area	79
5.2 Geology, physiography and history of the Yorkshire Dales	79
5.3 Cam Gill Beck, Starbotton	83
5.3.1 Description	83
5.3.2 Human history at Cam Gill Beck	84
5.3.3 Flood history	84
5.4 Application of the model to Cam Gill Beck	86
Chapter 6: Modelling geomorphic response to environmental change	89
6.1 Introduction	89
6.2 Methodology	89
6.2.1 Overview	89
6.2.2 Run details	90
6.3 Results	91
6.4 Discussion	101
6.4.1 The impacts of climate change and deforestation	101
6.4.2 Validation and limitations	106
6.5 Conclusions	109

Chapter 7: Geomorphic response to extreme events: Modelling the 1686 Starbotton flood 7.1 Introduction	111
7.2 Field evidence	111
7.3 Method	113
7.4 Results	113
7.5 Discussion	119
7.6 Conclusions	123
Chapter 8: Simulating the Holocene evolution of Cam Gill Beck	124
8.1 Introduction	124
8.2 Method	125
8.3 Results	128
8.4 Discussion	140
8.4.1 Long term sediment discharge	140
8.4.2 Alluvial fan development	144
8.5 Conclusion	147
Chapter 9: The role of non-linear processes	148
9.1 Introduction	148
9.2 Examples of non linearity	148
9.2.1 Non-linear sediment discharges	148
9.2.2 Land form development	150
9.3 Discussion	156
9.4 Conclusions	159
Chapter 10: Synthesis and conclusions	160
10.1 Main conclusions	160
10.2 General themes	160
10.3 Modelling advances	164
10.4 Future work	165
10.4.1 Model improvement	165
10.4.2 Alternative applications	165
10.5 Summary	166
References	167

List of figures

2.1	Relationship between vegetation, precipitation and sediment yield,	7
	after Langbein and Schumm (1958).	
2.2	Dated Holocene alluvial units for the UK from Macklin and Lewin	8
	(1993).	
2.3	Dated flood magnitudes for the upper Mississippi (After Knox,	9
	1993).	
2.4	Boulder size/age diagram from Macklin et al.(1992b).	10
2.5	Ice core record from Stuvier et al. (1995).	12
2.6	Ice core record of storminess from Mayewski et al. (1995).	12
2.7	Paleoclimatic wetness index derived from peat cores, from Barber <i>et al.</i> (1994).	13
2.8	Peat core climate record from Anderson et al. (1998). The top half	14
	of the diagram details the wetness indices from four separate peat	
	cores and the main composite record (A) constructed from them. In	
	the lower half this composite A is compared to lake levels from	
	Scotland and France, as well as records of glacial advances.	
2.9	Predicted precipitation increases from GCM's (from Conway,	16
	1998).	
3.1	Finite element mesh for River Culm, from Bates et al. (1997).	25
3.2	Finite element mesh used by Nicholas and Walling (1997).	26
3.3	Interactions between TOPMODEL parameters, from Quinn <i>et al.</i> (1991).	32
3.4	Performance of observed vs predicted sediment discharge rates for	48
	the Elbow river, from Gomez and Church (1989).	
3.5	Diagram describing movement of sediment between active layers	50
	and stream bed.	
4.1	Schematic diagram of the key processes operating in the CA model.	55
4.2	Diagram depicting the scanning of the catchment area.	59
4.2	Schematic of models operation.	67
4.4	Graph showing depths calculated using the models' adaptation of	69

Mannings formulae and the original.

4.5	Graph showing the actual discharge inputted to the model, and	69
	discharge calculated by Mannings formula and using model outputs	
	of depth and width.	
4.6	Velocity and water surface profiles for rectangular and triangular	70
	channels.	
4.7	Velocity and water surface profiles for a triangular channel with a	71
	central bar.	
4.8	Velocity and water surface profiles in a rectangular channel with an	72
	off centre obstacle.	
4.9	Drainage networks from the model and ARC-INFO, all cells shown	75
	are over 1500 drainage units.	
4.10	Changes in sediment discharge and number of grid cells with	76
	changes in grid cell area.	
5.1	Relief of Yorkshire Ouse catchment.	81
5.2	Geology of Yorkshire Ouse catchment.	81
5.3	Quaternary glaciation of the Yorkshire Dales.	82
5.4	Upper Wharfedale, showing the wide glacially formed valley floor.	82
5.5	View of Cam Gill Beck and the village of Starbotton	83
5.6	Plan view of Cam Gill Beck, detailing the main flood deposit.	85
5.7	Photograph of section of flood deposit exposed by incision. Here	85
	the deposit is 1.8m deep and lying on top of boulder clay. Note the	
	large boulder, C. 0.5m diameter.	
5.8	DEM of Cam Gill Beck. Scale 2800 by 1400m.	86
5.9	Average grainsize distribution for Cam Gill Beck.	87
5.10	Rainfall intensity, Coverdale, 1/1/1997 to 31/12/1998.	88
5.11	Frequency distribution of hourly rainfall intensity for Coverdale and	88
	Church Fenton.	
6.1	Sediment discharge from run 1.	93
6.2	Averaged ten year sediment discharges for run 2.	93

6.4	Long term relationship between vegetation, rainfall and sediment	94
6.5	Bedload discharge compared to catchment area from Table 6.3.	95
6.6	Fluctuating sediment discharges from <i>run 2</i> .	95
6.7	Plan view of Cam Gill Beck from the model and aerial photograph.	98
6.8	Aerial photograph and model output of section highlighted in Figure	99
	6.7. Photographs of channels A, B and C highlighted above. All	
	pictures taken from the opposite side of the valley.	
6.9	Aerial photograph and model output of section highlighted in figure	100
	6.7. Photographs of channels A, B, C and D highlighted above.	
6.10	Drainage networks from Dense 1, Medium 2 and Sparse 4.	101
6.11	Hydrographs from simulations highlighted in Table 1.	104
6.12	Details of hydrographs sparse 1.5 and dense 1.5 from Figure 6.11.	105
	The top graph has an m value of 0.005 , the lower 0.015 .	
6.13	Conceptual diagram of Cam Gill Beck evolution.	110
7.1	3d projection of Cam Gill Beck DEM, viewed from the south. Scale	112
	1400 by 2800m, showing sections detailed in figures 7.2 and 7.4.	
7.2.1	Plan view of deposit section.	114
7.2.2	Shaded view of simulation results.	114
7.2.3	Shaded view with deposition highlighted.	114
7.3	Hydrograph from the simulated extreme flood. The vertical black	115
	lines indicate the times of figure 7.4 pictures 1-6.	
7.4	Plan views showing movement of a sediment wave (highlighted in	116
	white).	
7.5	Long profile of sections from figure 7.4.	118
7.6	Long profile adjustment after a large flood in the Eel River,	118
	California, and changes in bed height, Waimakariri River, New	
	Zealand (from Knighton 1998)	
8.1	Climate record derived from Anderson et al. (1998).	126
8.2	Land use record.	126
8.3	This shows the entire DEM used in Chapter 8, and the inset a	127

zoomed view of the fan sections initial conditions (3 times vertical exaggeration).

8.4	Catchment sediment discharge with climate and vegetation cover.	129
8.5	Scatter plot and regression lines of sediment discharge and rainfall	129
	magnitude.	
8.6	Catchment sediment discharge compared to dated Ouse basin flood	131
	units.	
8.7	Cumulative total of catchment sediment discharge.	131
8.8	Fan accumulation and sediment leaving fan, plotted with rain	132
	magnitude and vegetation cover.	
8.9	Cumulative chart of fan accumulation and sediment leaving fan.	132
8.10	Topography and erosion/deposition for Cam Gill Beck alluvial fan.	133
8.11	Contour plot of depth of material deposited on the alluvial fan	138
	during the simulation.	
8.12	Contour plot of difference between final simulation topography and	139
	present day.	
9.1	Graph showing the volume of sediment moved and removed from	149
	the catchment for each flood.	
9.2	Sediment discharge averaged over ten years from chapter 6.	149
9.3	Draped image of Cam Gill Beck DEM, detailing locations of	151
	Figures 9.4-8.	
9.4	Confluence section before flood series.	151
9.5	Confluence after 15 floods of bankfull discharge.	152
9.6	Grainsize composition of confluence section.	153
9.7	Plan view of berm/bar section.	153
9.8	15 frames showing the development of the stream head over the 15	154
	floods.	

10.1 Bubble chart showing sediment discharges from chapter 6. Ellipse 161
A represents the present day vegetation cover/climate of Cam Gill
Beck and B shows the increase in sediment yield caused by global
warming forecasts of a 20% increase in rain magnitude.

List of tables

2.1	Studies linking upland Holocene change to land use variations.	6
2.2	Volume eroded in Wycoller Beck, from Evans (1996).	17
3.1	Comparison of conventional and cellular automaton modelling techniques.	45
3.2	Ten contemporary sediment transport equations from Gomez and Church (1989).	46
4.1	Comparison between model and ARC-INFO flow routing statistics. All figures in drainage units.	75
6.1	Detail of simulations carried out. The columns represent changing flood magnitude, from a ten year hourly rainfall. The rows represent different vegetation scenarios, the number corresponding to the factor altered in the hydrological model.	90
6.2	'Other' runs.	91
6.3	Bedload volume calculated assuming 2.65 t/m ³ (after Warburton and Evans 1998).	96
6.4	Ten year sediment discharges from 'Other' runs.	97
7.1	Sediment discharges. (all units in m ³).	113
7.2	Comparison of sediment volumes eroded.	119
8.1	Regression statistics from figure 8.6	130

a	Area draining through a point (Beven and Kirkby 1979)
A	River channel cross sectional area
С	Active layer sediment transfer factor (Hoey and Ferguson, 1994)
d	Water depth
D	Grain size
D	Detachment rate (Kirkby 1992)
Do	Detachment rate parameter (Kirkby 1992)
Dx	Horizontal spacing
е	Cell elevation
Ε	Amount transferred between grainsize proportions
E	Proportion of material to be moved to active layer (Hoey and Ferguson,
	1994)
f	Proportion of sediment inactive layer (Hoey and Ferguson, 1994)
F	Grainsize fraction
F	Active layer proportion (Hoey and Ferguson, 1994)
g	Gravity
h	Travel distance (Kirkby 1992)
i	Neighbouring cell (Murray and Paola, 1994)
i	Grainsize fraction (Hoey and Ferguson, 1994)
j	Previous iteration soil saturation
J	Soil saturation
Κ	Hydraulic conductivity
Κ	Topographic index (Beven and Kirkby 1979)
т	TOPMODEL scaling parameter
m	Constant (Kirkby 1992)
п	Mannings coefficient
р	Bedload proportion (Hoey and Ferguson, 1994)
Р	Perimeter
q_s	Volumetric sediment transport
Q	Discharge
Q_i	Discharge (Murray and Paola, 1994)
Q_o	Total discharge carried (Murray and Paola, 1994)

List of symbols

R	Hydraulic radius
S	Slope
t	Time
Т	Time step
W	Channel width
Λ	Gradient (Kirkby 1992)
Λ_o	Gradient threshold (Kirkby 1992)
β	Slope gradient (Beven and Kirkby 1979)
Ψ	Balance between forces restraining an moving particle (Einstein 1950)
$ ho_{s}$	Sediment density
ρ	Water density
ϕ	Dimensionless bedload transport rate (Einstein 1950)

Rainfall rate

r