THE IMPACT OF HISTORICAL METAL MINING ON THE RIVER SWALE CATCHMENT, NORTH YORKSHIRE, U.K.

IAN DENNIS

UNIVERSITY OF WALES, ABERYSTWYTH JULY 2005

ABSTRACT

This investigation examines the impact of historical metal mining on the River Swale catchment, North Yorkshire, U.K. Approximately 550,000 tonnes of Pb were extracted from mines in the Swale catchment during the eighteenth and nineteenth centuries. Mining and processing operations were relatively inefficient, leading to the discharge of large quantities of metal-rich sediment into the fluvial system. The primary aim of this thesis is to assess the physical and chemical impacts of the discharge of metals from historical mining activities on the River Swale catchment as a whole. The dispersal, storage and transfer of metal-rich sediment in formerly mined tributaries, floodplain and flood sediments are evaluated, and the environmental consequences of mining are assessed.

A detailed geochemical survey of the River Swale catchment indicates that channel and floodplain sediments within formerly mined tributaries exhibit extremely high concentrations of Pb, Zn and Cd. Similar enrichment is observed in floodplain sediments from throughout the catchment, suggesting that large volumes of material have been transported from the tributaries and deposited on the Swale floodplain. Evidence from contemporary flood sediments suggests that considerable quantities of metal-rich sediment continue to be cycled through the system almost 100 years after the cessation of mining operations. Sediment budgeting suggests that 32,000 tonnes of Pb remain stored in formerly mined tributaries, with a further 123,000 tonnes stored in the Swale floodplain. Combined storage represents more than half of the total Pb that is likely to have been released during mining operations, suggesting that the impacts of metal mining are extremely long-lasting. Concentrations of Pb, Zn and Cd in tributary, floodplain and flood sediments greatly exceed current U.K. environmental quality guidelines and catchmentspecific background values. Metal enrichment as a result of historical mining operations could therefore pose a serious and long-term threat to plant and animal health in the Swale catchment.

ACKNOWLEDGEMENTS

First, I would like to thank my supervisors, Dr. Tom Coulthard, Professor Mark Macklin, and Dr. Paul Brewer, for their advice and help with all aspects of this thesis. Grateful thanks are also extended to Dr. Bill Perkins, Dr. Nick Pearce, Lorraine Hill, Lorraine Morrison and Wynne Ebenezer, without whose invaluable guidance geochemical analyses would have proved impossible! Ian Gulley and Anthony Smith are also thanked for their assistance in producing several of the figures included in this thesis. Dr. John Ridgway is thanked for the provision of BGS G-Base data for the Swale catchment, and Dr. Sean Longfield and Victoria Townend of the Environment Agency are thanked for providing flow data from the Catterick Bridge gauging station. Thanks are also extended to the landowners of the River Swale catchment, without whose co-operation this investigation would have been impossible. Eric Johnstone, Phillippa Noble, Anna Jones, Graham Bird, Simon Gittins, Jonathan Turner and Liz Young are all thanked for their helpful discussions and much appreciated assistance with field work, and Marco van de Wiel is thanked for his advice with all things mathematical and computational.

I would also like to thank all my friends here in Aberystwyth for their assistance with 'rest and recuperation', especially Eric, Simon, Zenobia, Natalie, and Graham. Finally, deepest thanks are extended to my parents, Nicola, and of course Clare, who have helped me through my studies with their support and encouragement.

Ordnance Survey Landline data appears in Figures 4.6, 5.3 – 5.14 and 7.2. © Crown Copyright Ordnance Survey. An EDINA Digimap/ JISC supplied service.

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	X
LIST OF TABLES	xiv
LIST OF PLATES	xvi

CHAPTER 1

1.1. Introduction	1
1.2. Metals in fluvial sediments: a review	3
1.2.1. Introduction	3
1.2.2. The behaviour of metals in fluvial sediments	3
1.2.3. Metal transport in fluvial sediments	6
1.2.4. Metal storage in fluvial sediments	9
1.2.5. Remobilisation of metals	11
1.2.6. The geomorphological impacts of metal mining	12
1.2.7. Summary: Metals in fluvial sediments	15
1.3. Thesis background and aims	15

INTRODUCTION: METALS IN FLUVIAL SEDIMENTS

CHAPTER 2

STUDY AREA: THE RIVER SWALE CATCHMENT AND ITS MINING HISTORY

2.1. The River Swale catchment	18
2.1.1. General characteristics	18

Contents

2.1.2. Catchment geology	20
2.1.3. Mineralisation	22
2.1.4. Catchment geochemistry	24
2.1.5. Glacial history and Holocene development	25
2.1.6. Fluvial geomorphology	25
2.2. Metal mining in the Swale catchment	31
2.2.1. The history of lead mining in Swaledale	31
2.2.2. Mining and processing techniques	32
2.2.3. Mining production records	39
2.3. The impact of metal mining on the River Swale system	42
2.3. The impact of metal mining on the River Swale system2.3.1. The potential impacts of mining and processing	42 42
2.3.1. The potential impacts of mining and processing	42
2.3.1. The potential impacts of mining and processing2.3.2. Investigations of floodplain contamination	42 43
2.3.1. The potential impacts of mining and processing2.3.2. Investigations of floodplain contamination2.3.2.1. Upland contamination patterns	42 43 <i>43</i>
 2.3.1. The potential impacts of mining and processing 2.3.2. Investigations of floodplain contamination 2.3.2.1. Upland contamination patterns 2.3.2.2. Piedmont contamination patterns 	42 43 <i>43</i> <i>44</i>
 2.3.1. The potential impacts of mining and processing 2.3.2. Investigations of floodplain contamination 2.3.2.1. Upland contamination patterns 2.3.2.2. Piedmont contamination patterns 2.3.2.3. Lowland contamination patterns 	42 43 43 44 45

CHAPTER 3

GEOCHEMICAL CHARACTERISATION OF FLUVIAL SEDIMENTS IN THE SWALE CATCHMENT

3.1. Introduction	50
3.2. Laboratory methods	51
3.2.1. Particle size selection	51
3.2.2. Initial sample preparation	51
3.2.3. Digestion procedure	52
3.2.4. ICP-MS analysis	54
3.3. Analytical Quality Control	55
3.3.1. Approaches to AQC	55
3.3.2. Quality control during sample collection	55
3.3.3. Quality control during sample preparation and analysis	56
3.3.4. Data quality: AQC results	57
3.4. Summary	58

THE IMPACT OF METAL MINING ON HEADWATER TRIBUTARIES OF	' THE
RIVER SWALE: THE GUNNERSIDE BECK CATCHMENT	
4.1. Introduction	59
4.2. Study Area: Gunnerside Beck	60
4.2.1. General characteristics	60
4.2.2. Catchment geology and mineralisation	60
4.2.3. Fluvial geomorphology	63
4.3. Mining in Gunnerside Beck	68
4.3.1. Mining history	68
4.3.2. The Blakethwaite mines	68
4.3.3. The Lownathwaite mines	70
4.3.4. The Old Gang mines	73
4.3.5. Sir Francis Level	74
4.3.6. Summary: The legacy of mining in Gunnerside Beck	75
4.4. The impact of mining on catchment geochemistry	76
4.4.1. Introduction	76
4.4.2. Methods	76
4.4.3. Patterns of metal dispersal in mine waste	76
4.4.4. Patterns of metal dispersal in floodplain sediments	80
4.4.5. Patterns of metal dispersal in channel sediments	87
4.4.6. Grain size partitioning	93
4.4.7. Summary: The geochemical legacy of mining in Gunnerside Beck	95
4.5. The impact of mining on fluvial geomorphology	98
4.5.1. Introduction	98
4.5.2. Morphological changes attributable to mining	98
4.5.3. Morphological changes since the cessation of mining	101
4.5.4. Summary: The geomorphological legacy of mining in Gunnerside Beck	103
4.7. Conclusion	103

METAL DISTRIBUTION IN FLOODPLAIN SEDIMENT	
5.1. Introduction	105
5.2. Methods	106

5.3. Metal distribution patterns	109
5.3.1. Introduction	109
5.3.2. Downstream metal distribution patterns	110
5.3.3. Lateral metal distribution patterns	110
5.3.3.1. Hartlakes	110
5.3.3.2. Reeth	113
5.3.3.3. Hudswell	113
5.3.3.4. Brompton-on-Swale	116
5.3.3.5. Great Langton	116
5.3.3.6. Morton Flatts	118
5.3.3.7. Fairholme	120
5.3.3.8. Maunby	121
5.3.3.9. Holme	122
5.3.3.10. Eldmire	123
5.3.3.11. Thornton Manor	124
5.3.3.12. Myton-on-Swale	124
5.3.3.13. Additional floodplain cores	124
5.3.4. Summary: Metal distribution patterns in floodplain sediments	127
5.4. Controls on metal distribution	127
5.4.1. Introduction	127
5.4.2. Longitudinal distribution patterns	128
5.4.3. Lateral distribution patterns	131
5.4.4. Metal distribution patterns with depth	140
5.4.5. Summary: Controls on metal distribution in floodplain sediments	140
5.5. Conclusion	141

PATTERNS OF METAL DISTRIBUTION IN CONTEMPORARY FLOOD SEDIMENTS

6.1. Introduction	142
6.2. Methods	143
6.2.1. Recent floods in the Swale catchment	143
6.2.2. Flood sediment: sampling and analysis	144
6.2.3. Measuring overbank metal deposition	148

Contents

6.3. Metal distribution patterns in flood sediments	149
6.3.1. Introduction	149
6.3.2. October-December 2000 floods	150
6.3.2.1. Channel-edge sediment	150
6.3.2.2. Overbank sediment	150
6.3.3. November-December 2001 floods	153
6.3.3.1. Channel-edge sediment	153
6.3.3.2. Overbank sediment	153
6.3.4. January-February 2002 floods	155
6.3.4.1. Channel-edge sediment	155
6.3.4.2. Overbank sediment	157
6.3.5. Grain size partitioning in flood sediments	157
6.3.6 Metal deposition on the River Swale floodplain	161
6.3.7. Summary: Metal distribution patterns in flood sediments	164
6.4. Controls of downstream metal concentrations in flood sediments	168
6.4.1. Introduction	168
6.4.2. Downstream decline of metals on flood sediments	168
6.4.3. Sediment inputs	168
6.4.4. Geomorphological controls	172
6.4.5. The influence of flood magnitude on metal concentrations	175
6.4.6. Summary: Controls of downstream metal distribution in flood sediments	178
6.5. Conclusion	178

METAL STORAGE IN THE RIVER SWALE CATCHMENT	
7.1. Introduction	180
7.2. Metal storage in formerly mined tributaries	181
7.2.1. Introduction	181
7.2.2. Methods: Estimating metal storage in Gunnerside Beck	181
7.2.3. Metal storage in Gunnerside Beck	183
7.2.4. Potential metal storage in tributary sediments	188
7.2.5. Summary: Metal storage in tributary sediments	188
7.3. Metal storage in floodplain sediments	191
7.3.1. Introduction	191

Contents

7.5. Conclusion	201
7.4. Metal storage and fluxes in the River Swale catchment	199
7.3.4. Summary: Metal storage in floodplain sediments	198
7.3.3. Metal storage in the River Swale floodplain	192
7.3.2. Methods: Estimating floodplain metal storage	191

CHAPTER 8

ASSESSING THE ENVIRONMENTAL IMPACT OF MINING IN THE SWALE CATCHMENT

8.1. Introduction	202
8.2. Assessment using environmental quality guidelines	203
8.2.1. Environmental quality guidelines in the U.K	203
8.2.2. Comparison with U.K guidelines	206
8.2.3. Limitations of existing guidelines	212
8.3. Assessing using background concentrations	213
8.3.1. Approaches to background determination	213
8.3.2. Determining background metal concentrations in the Swale catchment	215
8.3.3. Comparison with background concentrations	221
8.3.4. Limitations of estimating background concentrations	225
8.4. Environmental impacts of metal enrichment	227
8.4.1. Implications of metal enrichment in fluvial sediments	227
8.4.2. Potential management strategies	229
8.5. Conclusion: The environmental impact of metal mining	231

CONCLUSIONS	
9.1. Summary of findings	233
9.1.1. Metals in tributary sediments	233
9.1.2. Metals in floodplain sediments	234
9.1.3. Metals in flood sediments	234
9.1.4. Metal storage in the Swale catchment	235
9.1.5. The environmental impact of mining	235
9.2. Overall conclusions	236

9.3. Implications	236
9.4. Recommendations for further research	238

BIBLIOGRAPHY	240
APPENDIX 1: GUNNERSIDE BECK DATA	257
APPENDIX 2: FLOODPLAIN SEDIMENT DATA	261
APPENDIX 3: FLOOD SEDIMENT DATA	267

LIST OF FIGURES

CHAPTER 2

Figure 2.1:	The River Swale catchment, showing drainage network and major	19
	tributaries	
Figure 2.2:	Geology of the Swale catchment	21
Figure 2.3:	The distribution of mineral veins in the Swale catchment	22
Figure 2.4:	Geomorphological characteristics of the River Swale	26
Figure 2.5:	Location and output of Pb mines in Swaledale	32
Figure 2.6:	The ore dressing process employed in Swaledale Pb mines	35
Figure 2.7:	Location of smelters and dressing floors in Swaledale	38
Figure 2.8:	Total Pb production by tributary	41
Figure 2.9:	Metal contamination in River Swale channel sediments	47

CHAPTER 3

Figure 3.1: Flow chart detailing the HNO₃ digestion procedure used in this 53 investigation

Figure 4.1:	Map of the Gunnerside Beck catchment, showing drainage network,	61
	relief, and location of mines, dressing floors and smelters	
Figure 4.2:	Major mineral veins in the Gunnerside catchment	62
Figure 4.3:	Geomorphological characteristics of Gunnerside Beck	64
Figure 4.4:	The Blakethwaite lead mines	69
Figure 4.5:	The Lownathwaite and Old Gang mines	71
Figure 4.6:	Sediment sample sites in Gunnerside Beck	77
Figure 4.7:	Pb, Zn and Cd concentrations in 2000-63 μm Gunnerside Beck mine	81
	spoil	
Figure 4.8:	Pb, Zn and Cd concentrations in <63 µm Gunnerside Beck mine spoil	82

- Figure 4.9: Pb, Zn and Cd concentrations in 2000-63 µm Gunnerside Beck 83 floodplain sediments
- Figure 4.10: Pb, Zn and Cd concentrations in <63 µm Gunnerside Beck floodplain 84 sediments
- Figure 4.11:Floodplain contamination schematic88
- Figure 4.12: Pb, Zn and Cd concentrations in 2000-63 µm Gunnerside Beck 89 channel sediments
- Figure 4.13: Pb, Zn and Cd concentrations in <63 μm Gunnerside Beck channel 90 sediments
- Figure 4.14: Grain size characteristics of Gunnerside Beck floodplain sediments, 94 channel sediments and mine spoil
- Figure 4.15: Gunnerside Beck 2000-63 µm concentrations, waste inputs and 96 catchment characteristics
- Figure 4.16: Gunnerside Beck <63 µm concentrations, waste inputs and catchment 97 characteristics

Figure 5.1:	Floodplain sediment study sites in the River Swale catchment	
Figure 5.2:	Downstream trends in metal dispersal	
Figure 5.3:	Floodplain metal concentrations and surface topography at Hartlakes	112
Figure 5.4:	Floodplain metal concentrations and surface topography at Reeth	114
Figure 5.5:	Floodplain metal concentrations and surface topography at Hudswell	115
Figure 5.6:	Floodplain metal concentrations and surface topography at	117
	Brompton-on-Swale	
Figure 5.7:	Floodplain metal concentrations and surface topography at Great	118
	Langton	
Figure 5.8:	Floodplain metal concentrations and surface topography at Morton 1	
	Flatts	
Figure 5.9:	Floodplain metal concentrations and surface topography at Fairholme	120
Figure 5.10:	Floodplain metal concentrations and surface topography at Maunby	121
Figure 5.11:	Floodplain metal concentrations and surface topography at Holme	
Figure 5.12:	Floodplain metal concentrations and surface topography at Eldmire	
Figure 5.13:	Floodplain metal concentrations and surface topography at Thornton	
	Manor	

xi

- Figure 5.14: Floodplain metal concentrations and surface topography at Myton- 126 on-Swale
- Figure 5.15: Pb concentration in floodplain and tributary sediments, and 129 geomorphological characteristics
- Figure 5.16: Floodplain metal concentrations and elevation 134
- Figure 5.17: Simulated inundation frequency and floodplain metal concentrations 137 at Reeth
- Figure 5.18: Simulated inundation frequency and floodplain metal concentrations 138 at Brompton-on-Swale

- Figure 6.1: Mean, minimum and maximum daily discharge at Catterick Bridge 145 gauging station
- Figure 6.2: Map of the River Swale catchment, showing flood sediment sampling 146 sites and the location of major tributaries
- Figure 6.3: Pb, Zn and Cd concentrations in 2000 channel-edge flood sediment 151
- Figure 6.4: Pb, Zn and Cd concentrations in 2000 overbank flood sediment 152
- Figure 6.5: Pb, Zn and Cd concentrations in 2001 channel-edge flood sediment 154
- Figure 6.6: Pb, Zn and Cd concentrations in 2001 overbank flood sediment 155
- Figure 6.7: Pb, Zn and Cd concentrations in 2002 channel-edge flood sediment 156
- Figure 6.8: Pb, Zn and Cd concentrations in 2002 overbank flood sediment 158
- Figure 6.9: Grain size characteristics of channel-edge flood sediments 159
- Figure 6.10:Grain size characteristics of overbank flood sediments160
- Figure 6.11: Overbank sediment and metal deposition along the River Swale 162
- Figure 6.12: Pb concentrations in 2000, 2001 and 2002 flood sediments 165
- Figure 6.13: Zn concentrations in 2000, 2001 and 2002 flood sediments 166
- Figure 6.14: Cd concentrations in 2000, 2001 and 2002 flood sediments 167
- Figure 6.15: Pb concentrations in channel-edge flood sediment, tributaries and 170 floodplain sediment, and geomorphological characteristics
- Figure 6.16: Pb concentrations in overbank flood sediment, tributaries and 171 floodplain sediment, and geomorphological characteristics

- Figure 7.1: Estimating metal storage in tributary and floodplain sediments 182
- Figure 7.2: Floodplain Pb storage in Gunnerside Beck 184
- Figure 7.3: Likely maximum extent of floodplain metal storage in the Swale 194 catchment

- Figure 8.1: Swale tributary, floodplain and flood sediments and U.K. 208 environmental quality guidelines for Pb
- Figure 8.2: Swale tributary, floodplain and flood sediments and U.K. 209 environmental quality guidelines for Pb
- Figure 8.3: Swale tributary, floodplain and flood sediments and U.K. 210 environmental quality guidelines for Pb
- Figure 8.4: Cumulative frequency curves for Pb, Zn and Cd 218
- Figure 8.5: Recalculated background population (*F'*) for Pb, Zn and Cd 220
- Figure 8.6: Swale tributary, floodplain and flood sediments and background 222 concentrations for Pb
- Figure 8.7: Swale tributary, floodplain and flood sediments and background 223 concentrations for Pb
- Figure 8.8: Swale tributary, floodplain and flood sediments and background 224 concentrations for Pb

LIST OF TABLES

CHAPTER 2

- Table 2.1:Flood frequency and magnitude in the Yorkshire Ouse basin,28reconstructed from instrumental records
- Table 2.2:Flood frequency and magnitude in the Yorkshire Ouse basin,28reconstructed from flood deposits
- Table 2.3:Recorded and estimated lead production40
- Table 2.4:Recorded production of lead metal and concentrates in the North40Swaledale Mineral Belt
- Table 2.5:Recorded production of lead metal and concentrates in the South40Swaledale mining zone

CHAPTER 3

Table 3.1:Sampling and analytical coefficient of variation data for tributary,57floodplain and flood sediments

CHAPTER 4

- Table 4.1:Multiple regression results:The relationship between metal86concentrations and geomorphological parameters in Gunnerside Beckfloodplain sediments
- Table 4.2:Multiple regression results:The relationship between metal92concentrations and geomorphological parameters in Gunnerside Beck
channel sediments

- Table 5.1:Study reach characteristics107Table 5.2:Multiple regression results: The relationship between floodplain metal130
 - concentrations and geomorphological parameters

- Table 6.1:Multiple regression results:The relationship between metal 173concentrations in channel-edge flood sediments and geomorphological
parameters
- Table 6.2: Multiple regression results: The relationship between metal 174 concentrations in overbank flood sediments and geomorphological parameters

CHAPTER 7

Table 7.1:	Estimated storage of Pb in formerly mined tributaries	189
Table 7.2:	Estimated storage of Pb in floodplain sediments	193

Table 8.1:	U.K. metal concentration guidelines for Pb, Zn and Cd	205
Table 8.2:	Percentage failure of environmental quality guidelines	207
Table 8.3:	Descriptive statistics for fluvial sediments from the Swale catchment	216
Table 8.4:	Background concentrations for Pb, Zn and Cd in the Swale catchment	221
Table 8.5:	Percentage of samples exceeding background metal concentrations	225

LIST OF PLATES

CHAPTER 2

Plate 2.1:	North Hush and Priscilla Level, Gunnerside Beck	34
Plate 2.2:	Bouse teams, Old Gang Company dressing floor, Sir Francis Level,	34
	Gunnerside Beck	
Plate 2.3:	Water-powered crusher, Bunton Level, Gunnerside Beck	36
Plate 2.4:	Surrender smelt mill, Barney Beck	39

Plate 4.1:	The upper reaches of Gunnerside Beck	65
Plate 4.2:	Floodplain deposits downstream of the Old Gang and Lownathwaite	65
	mines	
Plate 4.3:	Floodplain deposits and the AD Company dressing floor at Sir Francis	66
	Level	
Plate 4.4:	Blakethwaite smelter and the Blind Gill – Gunnerside Beck confluence	70
Plate 4.5:	Sun Hush and North Hush	72
Plate 4.6:	Bouse teams and the remains of a crushing mill at Bunton Level	74
	dressing floor	
Plate 4.7:	Channel braiding upstream of the Old Gang and Lownathwaite hushes	100
Plate 4.8:	Braid bars and chutes downstream of the Old Gang and Lownathwaite	100
	hushes	
Plate 4.9:	Eroding bank section showing mining-related floodplain development	101
CHAPTE	R 6	

Plate 6.1:	Overbank sediments deposited in January-February 2002	147
------------	---	-----